Giải bài 3 trang 14 SGK Toán 10 tập 1

Đề bài

Xét hai mệnh đề:

Bạn đang xem bài: Giải bài 3 trang 14 SGK Toán 10 tập 1

P: “Tứ giác ABCD là hình bình hành”.

Q: “Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.

a) Phát biểu mệnh đề \(P \Rightarrow Q\) và xét tính đúng sai của nó.

b) Phát biểu mệnh đề đảo của mệnh đề \(P \Rightarrow Q\).

a) Mệnh đề \(P \Rightarrow Q\) phát biểu là “Nếu P thì Q” hoặc “P kéo theo Q”, “Từ P suy ra Q”.

b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\).

Lời giải chi tiết

a) Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình bình hành thì nó có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.

Mệnh đề này đúng vì “hai đường chéo cắt nhau tại trung điểm của mỗi đường” là tính chất của hình hình hành.

b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\), được phát biểu là: “Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì nó là hình bình hành”.

Trích nguồn: THPT Đồng Hới
Danh mục: Toán 10

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *